首页> 外文OA文献 >Physiological responses of red mangroves to the climate in the Florida Everglades
【2h】

Physiological responses of red mangroves to the climate in the Florida Everglades

机译:红色红树林对佛罗里达大沼泽地气候的生理反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This manuscript reports the findings of physiological studies of red mangrove (Rhizophora mangle L.) conducted from June to August 2001 and from May to June 2003 in the Florida Everglades. In situ physiological measurements were made using environmentally controlled gas exchange systems. The field investigations were carried out to define how regional climate constrains mangrove physiology and ecosystem carbon assimilation. In addition, maximum carboxylation and photosynthetic active radiation (PAR) limited carbon assimilation capacities were investigated during the summer season to evaluate whether ecophysiological models developed for mesophyte plant species can be applied to mangroves. Under summertime conditions in the Florida Everglades, maximum foliar carbon dioxide (CO2) assimilation rates reached 18 μmol CO2 m−2 s−1. Peak molar stomatal conductance to water vapor (H2O) diffusion reached 300 mmol H2O m−2 s−1. Maximum carboxylation and PAR‐limited carbon assimilation rates at the foliage temperature of 30°C attained 76.1 ± 23.4 μmol CO2 m−2 s−1 and 128.1 ± 32.9 μmol (e−) m−2 s−1, respectively. Environmental stressors such as the presence of hypersaline conditions and high solar irradiance loading (\u3e500 W m−2 or \u3e1000 μmoles of photons m−2 s−1 of PAR) imposed sharp reductions in carbon assimilation rates and suppressed stomatal conductance. On the basis of both field observations and model analyses, it is also concluded that existing ecophysiological models need to be modified to consider the influences of hypersaline and high radiational loadings on the physiological responses of red mangroves.
机译:该手稿报告了2001年6月至2003年8月以及2003年5月至2003年6月在佛罗里达大沼泽地进行的红树林(Rhizophora mangle L.)的生理研究结果。使用环境控制的气体交换系统进行原位生理测量。进行了现场调查,以确定区域气候如何限制红树林生理和生态系统碳同化。此外,在夏季研究了最大羧化和光合作用活性辐射(PAR)限制碳同化的能力,以评估为中生植物物种开发的生态生理模型是否可以应用于红树林。在佛罗里达大沼泽地的夏季条件下,最大叶面二氧化碳(CO2)同化速率达到18μmolCO2 m-2 s-1。对水蒸气(H2O)扩散的最大摩尔气孔导度达到300 mmol H2O m-2 s-1。在叶子温度为30°C时,最大羧化率和PAR限制的碳同化率分别达到76.1±23.4μmolCO2 m-2 s-1和128.1±32.9μmol(e-)m-2 s-1。诸如高盐条件和高太阳辐照负荷(PAR的光子m-2 s-1的u3e500 W m-2或u1000e摩尔)的环境压力强行降低了碳同化率并抑制了气孔导度。在实地观察和模型分析的基础上,还得出结论,需要修改现有的生态生理模型,以考虑高盐度和高辐射负荷对红树林的生理响应的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号